Product portfolio


Thirsty? How 'bout a cool, refreshing cup of seawater?

Post 2019-12-18 |

No, don't take us literally! Humans cannot drink saline water. But, saline water can be made into freshwater, which is the purpose of this portable, inflatable solar still (it even wraps up into a tiny package). The process is called desalination, and it is being used more and more around the world to provide people with needed freshwater. Most of the United States has, or can gain access to, ample supplies of freshwater for drinking purposes. But, freshwater can be in short supply in many parts of the Nation and world. And, as the population continues to grow, shortages of freshwater will occur more often, if only in certain locations. In some areas, salt water (from the ocean, for instance) is being turned into freshwater for drinking.

The "simple" hurdle that must be overcome to turn seawater into freshwater is to remove the dissolved salt in seawater. That may seem as easy as just boiling some seawater in a pan, capturing the steam and condensing it back into water (distillation). Other methods are available but these current technological processes must be done on a large scale to be useful to large populations, and the current processes are expensive, energy-intensive, and involve large-scale facilities.

What makes water saline?

What do we mean by "saline water?" Water that is saline contains significant amounts (referred to as "concentrations") of dissolved salts. In this case, the concentration is the amount (by weight) of salt in water, as expressed in "parts per million" (ppm). If water has a concentration of 10,000 ppm of dissolved salts, then one percent of the weight of the water comes from dissolved salts.

Here are our parameters for saline water:

  • Freshwater - Less than 1,000 ppm
  • Slightly saline water - From 1,000 ppm to 3,000 ppm
  • Moderately saline water - From 3,000 ppm to 10,000 ppm
  • Highly saline water - From 10,000 ppm to 35,000 ppm

By the way, ocean water contains about 35,000 ppm of salt.


A floating solar still is used to desalinate small amounts of seawater, using evaporation and condensation.



The worldwide need for freshwater

The scarcity of freshwater resources and the need for additional water supplies is already critical in many arid regions of the world and will be increasingly important in the future. Many arid areas simply do not have freshwater resources in the form of surface water such as rivers and lakes. They may have only limited underground water resources, some that are becoming more brackish as extraction of water from the aquifers continues. Solar desalination evaporation is used by nature to produce rain, which is the main source of freshwater on earth.

Another method: Reverse osmosis

Another way saline water is desalinized is by the "reverse osmosis" procedure. In most simplistic terms, water, containing dissolved salt molecules, is forced through a semipermiable membrane (essentially a filter), in which the larger salt molecules do not get through the membrane holes but the smaller water molecules do. 

Reverse osmosis is an effective means to desalinate saline water, but it is more expensive than other methods. As prices come down in the future the use of reverse osmosis plants to desalinate large amounts of saline water should become more common.

A view across a reverse osmosis desalination plant in Barcelona, Spain.

Desalination is not modern science

Distillation desalination is one of mankind's earliest forms of water treatment, and it is still a popular treatment solution throughout the world today. In ancient times, many civilizations used this process on their ships to convert sea water into drinking water. Today, desalination plants are used to convert sea water to drinking water on ships and in many arid regions of the world, and to treat water in other areas that is fouled by natural and unnatural contaminants. Distillation is perhaps the one water treatment technology that most completely reduces the widest range of drinking water contaminants.

In nature, this basic process is responsible for the water cycle. The sun supplies energy that causes water to evaporate from surface sources such as lakes, oceans, and streams. The water vapor eventually comes in contact with cooler air, where it re-condenses to form dew or rain. This process can be imitated artificially and more rapidly than in nature, using alternative sources of heating and cooling.



You will care:

A mini hydropower plant for charging mobile devices

‘Hydropower Plant’ In Your Pack

News 1How Is Wave Energy Used to Generate Electricity? RELATED How Is a Tsunami Created?